

Microplastics: emerging trends and research gaps

Phillip M. Potter, U.S. EPA, Cincinnati, OH ACS Spring National Meeting, 4/5/2021

What are microplastics?

- Microplastics (MPs) are small plastic particles (e.g., fibers, fragments, films, and pellets) < 5 mm across (largest crosswise dimension) and > 100 nm.
- Two categories:
 - Primary: Designed to be small. (e.g., PE/PP microbeads in personal care products, glitter, industrial pellets 'nurdles')
 - Secondary: Breakdown of larger plastic debris, tire wear, nylon/polyester fibers shed from laundry.
- Particles < 100 nm have been classified as 'nanoplastics' (NPs). However, most relevant size fraction is still under discussion.

Where are microplastics?

- Microplastics are ubiquitous
 - Air
 - Soil
 - Water
 - Food & drink

FOOD FOR THOUGHT

Beer, Drinking Water And Fish: Tiny Plastic Is Everywhere

August 20, 2018 - 11:57 AM ET

ENVIRONMENT | PLANET OR PLASTIC?

Microplastics are raining down from the sky

Scientists discover large amounts of tiny plastic particles falling out of the air in a remote mountain location.

ENVIRONMENT 08/18/2019 10:26 am ET

Scientists Astonished After Finding Microplastics In Arctic Snow

Sources: huffpost.com, npr.org, nationalgeographic.com

Ecotoxicity and human health impacts

- Bioaccumulation affecting plants and small animals
- Respiratory effects
- Vectors for persistent organic pollutants (POPs) and plastic-associated chemicals (PACs)

Current analytical methods

- Separation from sample matrix
 - sieving, density separation, digestion of organic material
- Identification/characterization
 - Most common: μ-FTIR, μ-Raman
 - Less common: TGA-GC/MS, hyperspectral imaging

Most of these techniques can only be used on microplastics > 10 microns, need new methods for nanoplastics

Plastic waste – hazard control

- Elimination stop using plastic
 - Not feasible in short term
- Substitution use different polymers
 - Need to identify primary polymer targets for substitution
- 1. Geographical source where are most MPs originating?
- 2. Polymer source which polymer types are contributing the most MPs?

MP monitoring: study limitations

- Manual μ -FTIR and μ -Raman methods are time-intensive, and biased due to particle selection and transfer for analysis. Automated methods needed.
- Weathering/transformations (UV degradation, biofilms) can alter spectra.
- Particles size limitations (ATR-FTIR > 500 μ m, μ -FTIR down to 20 μ m, Raman: low to sub- μ m)
- Water collection methods can miss small MPs (and NPs) due to mesh opening (e.g., 300 μm). Filters limited to smaller volumes due to clogging.
- Direct comparisons of different studies generally not possible due to the many different methods used.

Why study MPs?

- Plastic is persistent, growing, and pervasive:
 - 8,300 Mt produced since 1950
 - 6,300 Mt waste generated: 79% in landfills or environment
 - 12,000 Mt discarded by 2050
- MPs are everywhere: Arctic, Antarctic, deep sea, ice cores, remote islands.
- Small particles can impact marine ecosystems globally
- Freshwaters are sources, especially in urban areas, but not well studied.
- Environmental and health impacts uncertain

Source: Cumulative plastic waste generation and disposal, Geyer (2017)

Primary plastic production

382 Mt produced in 2015, generating 302 Mt in environmental waste

Polymer	Code	Total plastics produced since 1950 (Mt) ^a	Mass % of total nonfiber or fiber since 1950°	Primary production in 2015 (Mt)	% of total produced in 2015	Applications
Nonfiber plastics ^b						
Polyethylene (PE): - low density (LD) - linear low density (LLD) - high density (HD)	LD, LLD: 4 HD: 2	2628	36	64 (LD, LLD) 52 (HD)	17 14	Plastic bags, storage containers
Polypropylene (PP)	5	1533	21	68	18	Rope, bottle caps, gear, strapping
Polyvinylchloride (PVC)	3	876	12	38	10	Pipe, film, containers (69% used in building & construction)
Polystyrene: expanded, extruded (EPS, XPS)	6	<730	<10	25	7	EPS: cooler boxes, cups, floats XPS: containers
PE terephthalate (PET, PETE)	1	<730	<10	33	9	Bottles, strapping
Polyurethane (PUR)	-	<730	<10	27	7	Durable foams (insulation, etc.)
Fiber plastics						
Polyester, polyamide (PA), & acrylic (PP&A)	-	1000	70% PES, 30% PA&A	59	15	Textiles, nets, ropes

^aEstimates for 2015 (Geyer et al. 2017)

MP sources: direct release to oceans

Source: International Union for Conservation of Nature and Natural Resources (IUCN) .

Microfibers from synthetic textiles may be a much greater problem than originally thought:

- Of the total plastics released to oceans (4.8 12.7 Mt/year), 15% 31% could originate as MPs from homes and industrial products. About half of the total (3.2 Mt/year) MPs released, or about 1.5 Mt/year, ends up in oceans.
- Nearly two-thirds of the total MPs released is attributed to washing synthetic textiles (35%) and tire wear (28%). Microbeads represented just 2%.
- MP releases to oceans by Europe and Central Asia alone equivalent to 54 plastic bags per person year. Global average = 43 (North America = 150)

Emerging MP types: blends

Source: Wei et al. 2021

Emerging MP types: tires

REPORT

A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon

- D Zhenyu Tian^{1,2}, Haoqi Zhao³, Katherine T. Peter^{1,2}, Melissa Gonzalez^{1,2}, Jill Wetzel⁴, Christopher Wu^{1,2}, Ximi...
- + See all authors and affiliations

Science 08 Jan 2021: Vol. 371, Issue 6525, pp. 185-189 DOI: 10.1126/science.abd6951

Critical need: standards for exposure studies

Nanoplastics

- Any regulation that is designed with regard only to microplastics release will likely be insufficient in affecting nanoplastics release
- We have the opportunity to include nanoplastics in our current investigations into microplastics rather than approaching them as two separate problems

NPI complications and risks

- Purification bypass filtration methods intended for MPs
- Mobility less likely to settle, transport further
- Uptake more likely to enter food chain and bioaccumulate
- Toxicity more surface area allows faster leaching of plastic additives
- Pollutant vector more surface area for adsorption of metals and POPs

Critical need: nanoplastic definition

< 5 mm accepted definition of microplastics (MPs)

< 10 µm typical MP detection methods are less accurate or stop working

 $1 \, \mu m - 100 \, nm$ overlooked by standard nanoscale definition

100 nm – 1 nm nanoscale

MP methods overlook NPIs

Existing methods from nanotechnology

Distinguishing between NPIs and other nanomaterials is the obstacle, better extraction methods needed to eliminate interferences!

MP extraction methods ignore NPIs

Other methods are used, including different flotation media, filter sizes, oxidation reagents

Source: Agilent Technologies, Inc.

Current dilemma

 Can't develop a detection method without an adequate extraction method to eliminate nanomaterial interferences

- Use polymer nanosphere standard reference materials to:
 - confirm DLS, NTA, and TEM ability to detect NPIs
 - test MP characterization techniques (micro-Raman/FTIR)
- Can't develop an adequate extraction method without a viable detection method to confirm extraction

- Use polymer nanosphere standard reference materials to:
 - test existing MP extraction methods for NPIs
 - adapt extraction methods with new filters, flotation media, settling times

What can we learn from nanomaterials?

- Dynamic Light Scattering (DLS),
 Nanoparticle Tracking Analysis
 (NTA), and electron microscopy
 (TEM/SEM) all commonly used in nanomaterial characterization
- All give similar information size/shape
- Not sensitive to composition vulnerable to nanomaterial interferences

Emerging techniques – Pyr-GC/MS

- Thermal degradation products vary by polymer type but are not affected by particle size/shape
- Recent advances in sample preparation allow minimal pre-treatment in comparison with other techniques
- NPIs included in results, but no differentiation between MPs and NPIs

Emerging techniques – AFM-IR

- Excitation by IR source causes oscillation of cantilever
- Currently capable of ~100 nm resolution
- Yields size/shape/polymer identification

WWTPs remove microfibers and other MPs

- MP capture thought to relate to floatation and removal in grease by skimmers in primary treatment.
- Surface fouling/flocculation also may occur, causing MPs to sink in settling tank and/or associate with flocculants.
- MP removals of 96-99% are typical after secondary treatment. However, WWTPs release MPs due to high discharge volumes, and because they concentrate in sludge, which is used as fertilizer.

MP analytical techniques

Summary

- Need for standard size range for NPIs: 1 − 1000 nm
- Even in studies that focus on MPs, NPI standards should be included in evaluating extraction/detection efficiency
- Nanoplastics possibly pose a greater risk than MPs due to increased number, mobility, and reactivity; there is a critical need for:
 - New methods for extraction of nanoplastics from environmental media
 - Investigating nanoplastic properties (formation, adsorption, aggregation)

Acknowledgements

- Souhail Al-Abed, EPA
- Patricio Pinto, Pegasus Technical Services, Inc.
- Quinn Whiting, ORISE
- Sarah Hordern, ORISE

